Robust Fruit Counting: Combining Deep Learning, Tracking, and Structure from Motion

نویسندگان

  • Xu Liu
  • Steven W. Chen
  • Shreyas Aditya
  • Nivedha Sivakumar
  • Sandeep Dcunha
  • Chao Qu
  • Camillo J. Taylor
  • Jnaneshwar Das
  • Vijay Kumar
چکیده

We present a novel fruit counting pipeline that combines deep segmentation, frame to frame tracking, and 3D localization to accurately count visible fruits across a sequence of images. Our pipeline works on image streams from a monocular camera, both in natural light, as well as with controlled illumination at night. We first train a Fully Convolutional Network (FCN) and segment video frame images into fruit and non-fruit pixels. We then track fruits across frames using the Hungarian Algorithm where the objective cost is determined from a Kalman Filter corrected Kanade-Lucas-Tomasi (KLT) Tracker. In order to correct the estimated count from tracking process, we combine tracking results with a Structure from Motion (SfM) algorithm to calculate relative 3D locations and size estimates to reject outliers and double counted fruit tracks. We evaluate our algorithm by comparing with ground-truth human-annotated visual counts. Our results demonstrate that our pipeline is able to accurately and reliably count fruits across image sequences, and the correction step can significantly improve the counting accuracy and robustness. Although discussed in the context of fruit counting, our work can extend to detection, tracking, and counting of a variety of other stationary features of interest such as leaf-spots, wilt, and blossom.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Tracking of Humans in Video Stream Using LSTM Recurrent Neural Network

In this master thesis, the problem of tracking humans in video streams by using Deep Learning is examined. We use spatially supervised recurrent convolutional neural networks for visual human tracking. In this method, the recurrent convolutional network uses both the history of locations and the visual features from the deep neural networks. This method is used for tracking, based on the detect...

متن کامل

Robust Optimal Speed Tracking Control of a Current Sensorless Synchronous Reluctance Motor Drive using a New Sliding Mode Controller

This paper describes the robust optimal incremental motion control of a current  sensorless synchronous reluctance motor (SynRM), which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic (LQ) feedback control method and sliding mode control (SMC). A novel sliding switching surface is employed first, that makes the states of the Sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018